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Using lattice dynamics, the Lindemann law of melting has been tested for five body-centered and six face-
centered metallic elements. The law is obeyed by all five of the bcc alkali metals; the average Lindemann
parameter is 0.113. Four of the six fcc metals, A1, Cu, Ag, and Au, also obey the law with an average value
for the Lindemann parameter of 0.071. Explanations are proposed why the agreement of Ni and Pb with the
fcc value is not as good. The improvements are obtained by the use of spectral moments and data, where
available, on physical properties at high temperature. The slopes of the melting curves have been calculated
and are found to be consistently lower than the values experimentally determined, probably because of the
unavailability of data on properties at high temperature.

INTRODUCTION

T was hypothesized by Lindemann® that the melting
temperature of a material is attained when the root-
mean-square amplitude of atomic vibration becomes a
certain fraction § of the nearest-neighbor distance. It
was proposed that this fraction, the so-called Linde-
mann parameter, might be the same for all materials,
even at high pressures. Lindemann confined his treat-
ment to polycrystals in the Einstein approximation;
comparisons were made mainly using room-temperature
data.

Gilvarry? attempted to update the Lindemann law
and used data taken at the melting point. More re-
cently, Singh and Sharma? applied the methods of lattice
dynamics to this problem. These authors used a nu-
merical method to sample roots of the secular equation
but employed room-temperature elastic data.

In this paper, we shall treat the frequency spectrum
analytically by means of the moment trace method.*
Nearest- and next-nearest-neighbor central interactions
are treated and relations due to Fuchs® are employed
to determine the force constants. Elastic constants and
lattice constants extrapolated to the melting point will
be used. In addition, the statistical excitation of the
modes will be taken into account.

LINDEMANN LAW FROM A LATTICE
DYNAMICAL STANDPOINT

The mean-square amplitude of oscillation of a mon-
atomic crystal lattice is given by Blackman® as

Ekj
)= —
3mN x50 (k)
1 1 o () "
-3mN w2(K) (ehoi® KT 1) ’
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where m is the atomic mass, V is the number of atoms,
and FEy,; and w;(k) are the average energy and angular
frequency of a phonon of wave number k and polariza-
tion j. The zero-point energy is here neglected.

Inserting the Lindemann statement as (#2)= §%d% with
d, the nearest-neighbor spacing, and expressing the
sums as integrals, Eq. (1) becomes

o 1 oL g(w) hw
3mNJg

dw. 2)

w? (ehw/KBTM_l)

Here g(w) is the usual frequency distribution function
and wy, is the maximum lattice frequency. Also, the
temperature is now subscripted by an M to indicate that
the Lindemann relation is expected to hold at the melt-
ing point.

SECULAR DETERMINANTS AND
FORCE CONSTANTS

The secular determinants for body- and face-centered
lattices with nearest- and next-nearest-neighbor central
forces are given by deLaunay.” By applying the relations
of Fuchs? to the long-wavelength expansion of the deter-
minants, the force constants a; and s for first and sec-
on neighbors, respectively, can be related to the elastic

constants. deLaunay finds
1= %0644 ,
ar=3a(cii—cr2); bce 3)
a1=0aCy4,
0(2’—‘-%(1(611—612—644) , fce (4)

with a the lattice parameter.

For most metals, the potential decays rather rapidly
beyond the first few neighbors. The rate of decay can
be tested by examining the ratio as/a1. When as/ai1,
it is likely that the effects of atoms more distant than
the second neighbors can be safely neglected. Table I
gives the ratio as/a; for 12 bee and 10 fcc elements using
Eqgs. (3) and (4). If as/a; is not small, the addition of
more neighbors becomes necessary and the values of a;

7 J. deLaunay, Solid State Phys. 2, 219 (1956).
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1 LINDEMANN LAW AND LATTICE DYNAMICS

TastLk 1. Elastic constants and the ratio as/a; for some cubic
elements (at 7’=300°K, unless otherwise noted®).

len—ciz  az

C11 C12 C44 - =
Element (102 dyn/cm?) 3 cu a;
bee
Cr 3.50 0.68 1.01 0.93
CsP (78°K) 0.0247 0.0206 0.0148 0.092
Fe 2.30 1.35 1.14 0.28
K 0.0457 0.0374 0.0263 0.11
Li 0.134 0.112 0.096 0.076
Mo 4.41 1.72 1.22 0.73
Na 0.0739 0.0622 0.0419 0.093
Nb 2.46 1.34 0.287 1.3
Rbe (78°K) 0.0325 0.0273 0.0198 0.088
Ta 2.61 1.57 0.818 0.42
\% 2.28 1.19 0.426 0.85
w 5.15 2.04 1.56 0.66
1<611—612—644> a2
fcc 4 Caa ai
Ag 1.22 0.92 0.446 —0.082
Al 1.09 0.63 0.280 +0.16
Au 1.89 1.59 0.426 —0.074
Cu 1.69 1.22 0.754 —0.094
Ni 2.48 1.53 1.16 —0.045
Pb 0.481 0.408 0.146 —0.13
Pd 2.27 1.76 0.717 —0.072
Th 0.753 0.489 0.478 —0.11
Ird (0°K) 5.80 2.42 2.56 -+0.080
Pte 3.467 2.507 0.765 +0.064

8 Unless otherwise stated, all data are from Hearmon (see Ref.
F. J. Kollarits and J. Trivisonno, J. Phys. Chem. Solids 29, 2133 (1968)
o See Ref. 18.
d See Ref. 14,
© See Ref. 12.

and a will, in general, be altered. In fact, when more
than two sets of neighbors are included a unique deter-
mination of the force constants from the macroscopic
first order elastic constants is no longer possible.

For fcc lattices the last column in Table I is generally
smaller in magnitude than for the bce cases. The ratios
of second to first neighbor distances are 2/v3=1.155
for bee and V2=1.414 for fcc. Thus, it seems reasonable
that a bec lattice, in which the second neighbors are
somewhat closer will have larger force constant ratios
on the average than fcc structures.

Both a3 and a» are positive for the bce elements in
Table I. For the fcc metals, on the other hand, all have
a positive a, and, with the exception of AL, Ir, and Pt, a
negative as. Thus it appears that for the fcc metals ex-
cept Al, Ir, and Pt, the potential well is sufficiently
narrow for the second neighbors to be beyond the inflec-
tion point of the interatomic potential.

A qualitative criterion must be defined to determine
which of the metals of Table I are probably best de-
scribed by a two-constant model. We consider all metals
for which as/a; is approximately less than +. Hence bcc
metals Cr, Mo, Nb, Ta, V, and W are not considered;
all fcc entries meet this criterion. Iron is a borderline
case which would be retained were it not for the fact
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that the « phase for which elastic data are available
does not melt® at zero pressure.

MATRIX MOMENT METHOD

The spectrum g(w) is calculated by the moment-trace
method of Montroll.* Since the secular equation is a
cubic in «? and since the coefficients involve trigono-
metric functions it is possible to sum the /V equations in
closed form to obtain, in principle, all even moments
(w?") of the distribution. The spectrum is expanded in
Legendre polynomials of even order and the coefficients
of expansion can be expressed in terms of the even
moments.

The calculation of g(w) for simple and body-centered
lattices has been performed by Montroll,* and Montroll
and Peaslee,? respectively. Their procedure is extended
in the Appendix to include face-centered lattices. Let
g(x)dx represent the number of frequencies between x
and x+dx, 0<x<1. We find

7 7
go(we) =3N 2_ x> 3 Conr™, 6)
s=0 m=0
gs(xs)=3N Z xs% Z_:O Com Y™, (6)
with
bce

T= (1'{‘%0[2/0[1)"1
=4C44/(C11—612+4C44) y

=[4(4a1+3as)/3m "2
=[2a(c11—ciat4cas)/m]"2,
xb=w/wLb )
fcc 2
y=14as/2a1

=14 (c11—c12—c14)/8cus,
wr/ = (Sal/m)I/Z
= (8644(1/7%)1/2 ,

xf=w/w1/,

where the 64 coefficients ¢,»® are given by Montroll and
Peaslee? and the 49 coefficients ¢,»” are found in Table
VIII. The expansion for fcc lattices performed in the
Appendix was carried through the twelfth moment.
Montroll and Peaslee use one more moment; hence the
upper limits in the sums are different in the fcc and bec
cases.

MOMENT METHOD AND
LINDEMANN LAW

Expressions (5) and (6) considered as functions of
each contain a constant term, whereas it is well known?’

8K. F. Sterrett, W. Klement, Jr., and G. C. Kennedy, ]J.
Geophys. Res. 70, 1979 (1965).

9E. W. Montroll and D. C. Peaslee, J. Chem. Phys. 12, 98
(1944).
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that
5(x) = 0(2).

This nonphysical term, a necessary consequence of the
approximate moment scheme, causes the integral ofEq.
(2) to diverge. This difficulty can most easily be sur-
mounted by simply neglecting the small constant term
in (5) and (6); alternatively one can also express the
spectrum for small x by the first term in a Taylor’s
series about the origin. We have chosen the first
approach.

We substitute Egs. (5) and (6) into Eq. (2). For the
face-centered lattice d=a/V2 and Eq. (2) becomes

. 2 i ‘2 , oL x28 /) dw ®
3= — A Y el | ——————.

! m m=0 K s=1 /(; w? (eho!EBTM —1) wf
Setting

u=hw/KBTM, uLf=thf/KBTM

and using Eq. (7),

82 =K T mys/4cuua®, 9)

where
6 6
V= Z % Z CsmfG(uLfs) ,
m=0 s=1

and
dz

Gloes)= /0 G)““(ez_ 1)’

By expanding z/(e#—1) in a power series in z,

2 B2 Bzt

4!

er—1 3!
u? ut

12(25+1)  720(2513)

+
4s

Ug u

| — , (11
30 240(25+5) 1209 600(2s-+7) ()

which holds to within one part in 10° for all cases treated
in this paper.

For the body-centered structure the analogous al-
gebra gives

6b2=21(BTMyb/3 (cr1—c1ot-4cus)a?, (12)
where

7

Vo= 2_

m=0

7
3 com®G(ur,? 5).
s=1

The coefficient § has been assigned subscripts to allow
for the possibility that it is dependent upon structure.

SHAPIRO 1

ELASTIC CONSTANTS AND LATTICE
PARAMETERS AT FUSION

The metals listed in Table I were selected because
measurements of the lattice constants are available as
a function of temperature. In some cases it has been
found! that at temperatures above about 50°K the con-
stants decrease linearly over a range of several hundred
degrees.!! The elastic constants of Pt and Pd* do not
vary linearly with temperature within the limits of
experimental error. Therefore we do not attempt to pre-
dict values of the elastic constants for Pt and Pd at the
melting point with any degree of certainty. Only the
variation of ¢y with temperature is available for Irl4;
Ir is also excluded in this calculation.

Th is unusual ; although ¢1; and c44 decrease with tem-
perature as expected, c¢i» increases linearly, at least
throughout the range from 77 to 400°K.1* We do not
know if the anomalous behavior persists at higher tem-
peratures. In any case thorium undergoes a poly-
morphic transition betow the zero-pressure melting
point. Pt, Pd, Ir, and Th have been excluded from
further consideration.

Table II lists the pertinent parameters for the re-
maining eleven metals. The coefficient of thermal ex-
pansion, a, at elevated temperatures is difficult to ob-
tain experimentally but, for our purposes, happens not
to be crucial. Cs and Rb have zero-pressure melting
points sufficiently close to room temperature that cor-
rections to the density at 300°K are unnecessary. The
density of Li at melting was determined by a linear ex-
trapolation from the values at 78°K'® and 300°K."

Recent measurements of the elastic constants of Cu,
Ag, and Au have been made over a range of tempera-
tures up to about 809, of melting."! These are considered
as separate cases so that we may investigate the effects
of small changes in the values of the elastic constants on
the Lindemann parameter.

DISCUSSION AND RESULTS

Tables III and IV list the values of the Lindemann
parameter and other pertinent parameters at the melt-
ing point for the five body-centered alkali metals and
six face-centered metals, respectively. The value of §
cluster about 0.113 for the bec lattices and 0.071 for the

0 R. F. S. Hearmon, in Zaklenwerte and Funkiionen, New Series,
Group III, edited by H. Landolt and R. Bornstein (Springer-
Verlag, Berlin, 1966), p. 1.

Y. A. Chang and L. Himmel, J. Appl. Phys. 37, 3567 (1966).

2R. E. MacFarlane, J. A. Rayne, and C. K. Jones, Phys.
Letters 18, 91 (1965).

13 J. A. Rayne, Phys. Rev. 118, 1545 (1960).

4 R. E. MacFarlane, J. A. Rayne, and C. K. Jones, Phys.
Letters 20, 234 (1966).

1 P, E. Armstrong, O. N. Carlson, and J. F. Smith, J. Appl.
Phys. 30, 36 (1959).

1 H. C. Nash and C. S. Smith, ONR Research Report No.
140628, Case Institute of Technology, Cleveland, Ohio, 1958
(unpublished).

7 Handbook of Chemistry and Physics (Chemical Rubber Pub-
lishing Co., Cleveland, Ohio, 1959), 40th ed,
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TasLE II. Elastic constants at fusion and 7', p, a, and M for eleven cubic elements.
Ty c11(Twu) c12(Tar) caa(Tar) £(300) a
Element (°K (102 dyn/cm?) (g/cmd) (1074°K™1) M
fec
Li 459 0.12662 0.1064> 0.0739a 0.534> ‘e 6.94
Na 370.7 0.0709¢ 0.0599¢ 0.0370° 0.9714 2.75¢ 23.00
K 335.2 0.0363f 0.0310f 0.0172f 0.851f 2.5¢ 39.10
Rb 311.7 0.0269= 0.0230¢ 0.0130¢ 1.53b e 85.48
Cs 301.7 0.0218t 0.01862 0.01072 1.873b 132.91
bee
Al 932.7 0.6831 0.403% 0.1881 2.6994 0.99¢ 26.97
I 1.315% 1.0531 0.48331
Cu 1356 8.9373 0.70¢ 63.54
II 1.269i 1.018i 0.470i
I 0.9581 0.791% 0.279%
Ag 1233.8 10.50i 0.81¢ 107.88
1I 0.916 0.7643 0.287i
I 1.5381 1.3431 0.2941
Au 1336 19.303 0.58¢ 197.00
1I 1.572i 1.380i 0.281i
Pb 600.4 0.4191 0.3741 0.1001 11.34b 1.2¢ 207.21
Ni 1728 1.521 1.421 0.661 8.90P 0.57¢ 58.69

a T, Slotwinski and J. Trivisonno, J. Phys. Chem. Solids 30, 1276 (1969).

b See Ref. 17.

o M. E. Diederich and J. Trivisonno, J. Phys. Chem. Solids 27, 637 (1966).
d O, L. Anderson, in Physical Acoustics (Academic Press Inc., New York, 1965), Vol. III, Part B.

e O, Kubaschewski, Trans. Faraday Soc. 45, 931 (1949).

f W. R. Marquardt and J. Trivisonno, J. Phys. Chem. Solids 26, 273 (1965).

g See Ref. 18.

b F, J. Kollarits and J. Trivisonno, J. Phys. Chem. Solids 29, 2133 (1968).
10

iSee Ref. 10.
i See Ref. 11.

fcc lattices. These can be compared with Gilvarry’s
values of 0.13 and 0.11, respectively obtained by an
analysis based on the Debye-Waller theory, strictly
applicable only to polycrystals. Only one bcc element
considered by Gilvarry appears in Table ITI with the
result §x,=0.094. Those fcc elements listed both in
Table IV and in Gilvarry’s analysis have a mean value
of 8; of 0.083 in the latter case. These values are in only
slightly better agreement with ours. Significantly, the
values of §in Tables IIT and IV have a smaller scatter.
The factor
T/ el KpTar — 1

has been neglected previously, both by Gilvarry and by
Singh and Sharma on the assumption that, at melting
KT y>hw, for all modes and hence #<<1. This is in-
correct for a number of materials listed here. If we had
assumed that #7220, in the worst case, namely, that of
Li, we would have obtained a value §=0.124 instead of
0.116. Inclusion of this feature would have improved the
results of Singh and Sharma somewhat. Even so, Singh

TasLE III. Results for bce elements.

p(Ta) a(Ta)
A

Element 8 UL T as/ar (g/cmd) y
Lithium 0.116 0.731 0.936 0.091 0.526 3.525 4.40
Sodium 0.111 0.390 0.931 0.099 . 0.952 4.313 4.60
Potassium 0.112 0.252 0.928 0.103 0.844 5359 4.64
Rubidium 0.115 0.164 0.930 0.100 1.530 5.704 4.75
Cesium 0.111 0.128 0.930 0.100 1.873 6.177 4.83

and Sharma neglected the significant decreases in the
elastic constants with temperature.

If 0.113 is chosen as an average value for §; in Table
II1, the deviation is less than 39, whereas the accuracy
of the raw data (before extrapolation) is typically of the
same order.!® The extrapolations are made over a range
in which the elastic constants decrease by as much as
20 or 30%. The results are then certainly within the
experimental error in this case.

The mean of the fcc values of the Lindemann param-
eter is 0.071 and a slightly larger scatter arises com-
pared with the case of the bcc metals. The scatter is
probably greater than the limits of error of the initial
data. However, most of the available derivatives of
elastic constants with temperature are evaluated at
300°K 1 and the extrapolations to the melting tempera-

TasLE IV. Results for fcc elements.

o(Ta) a(Tn)
A

Element 8s urS v as/ar  (g/cmd) ¥

Aluminum  0.072 0.305 1.061 -+0.122 2.535 4.134 2.13
I 0.068 0.208 0.943 —0.110 2.43

Copoer 11 060 0.205 0.042 —0.120 300 3705 543
. I 0071 0.141 0950 —0.100 2.43
Silver II 0071 0.143 0041 —0.120 735 #1901 5 g
I 0073 0.099 0.958 —0.084 2.45

Gold II 0075 0.097 0960 —0.070 o170 4160 5y
Lead 0.065 0.137 0.931 —0.140 10.940 5.011 2.57
Nickel 0.077 0.196 0.894 —0.210 8.200 3.622 3.11

18 F, J. Gutman and J. Trivisonno, J. Phys. Chem. Solids 28,
805 (1967).
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tures, which are much greater than those of the alkali
metals, are much less reliable. However, measurements
are available for Cu, Ag, and Au to 800°K 11; these are
listed as IT in Table IV. Al gives a result consistent with
that of these three metals, which are themselves in-
ternally consistent. We conclude that the values of §
for bee and fee metals are significantly different ; Linde-
mann’s law holds for each structure separately.

This conclusion is in direct contrast with the results of
Cartz.”® Cartz combined the Debye theory with the
single-frequency Einstein assumption and obtained the
same average I indemann parameter for four selected
body-centered elements and several face-centered
elements.

The large value of § for nickel may be attributed
mainly to the relatively large value for y;. This ap-
parently does not arise due to an abnormal value for
u1’. However v is smaller for Ni than for the other fcc
metals and probably related to the fact that, at melting,
as/a1is —0.21 and is only —0.045 at room temperature.
The change in as/a; seems large when compared with
the other materials. This apparent anomaly may arise
from the dependence of the elastic constants on tem-
perature.l0:? ¢y exhibits a slight kink at the Curie tem-
perature while the plot of ¢i» against 7" is highly non-
linear throughout the entire range from 4.2 to 750°K.
Part of this complication may arise from magnetic con-
tributions to the constants below the Curie point.20 Ex-
trapolation of the data from the Curie point to melting
may be questionable. This applies most strongly to cis,
and somewhat less so to c¢i1. cu4 appears to be linear
above 300°K. If the value y=2.50 were used for nickel
typical of the other fcc metals then §;=0.069 in sub-
stantial agreement with the first four entries.

The case of lead is more formidable. It is possible that
extrapolations for this metal are unjustified, but this
appears to be unlikely in light of the relatively low
melting point. Extrapolations here cover a range of
roughly only 300°K whereas for aluminum the span is
more than twice as great; for the other fcc entries ex-
trapolations span a thousand degrees or more.

A plausible explanation may be found in the neutron-
scattering work of Brockhouse ef ¢/.! An analysis of the
experimental 100°K dispersion curves measured in spe-
cific crystal directions shows that in order to fit the
data meaningfully one must include interactions out to
at least fifth-order neighbors. Brockhouse et al. con-
clude that, “because of the long range (of the forces in
lead), it is not possible to obtain a detailed description
of the force constants in the Born—von Kdrmén theory.”
Until more is known about the frequency distribution
for lead at elevated and room temperatures, no state-

¥ L. Cartz, Proc. Phys. Soc. (London )B68, 957 (1955).

0 G, A, Alers J. R. Neighbours, and H. Sa.to J. Phys. Chem.
Solids 13, 40 (1960)

2B, N, Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and A. D.
B. Woods, Phys. Rev. 128, 1099 (1962).
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ment supporting or refuting the Lindemann theory can
be made.

Gilvarry? interpreted the discrepancy between 6, for
Al and Pb as a refutation of the Lindemann law. Our
results show that the more accurate lattice dynamical
method gives results in only slight disagreement. More
important, aluminum is consistent with most of the
other fcc metals. Our results for Pb are the least reliable.

MELTING SLOPES

A test of the Lindemann law is to evaluate dT3/dP.
Equations (9) and (12) may be solved for 7’5 and loga-
rithmically differentiated yielding

dInTy dlnc 19V d Iny
e o -2, W)
apP OP lyy V OPly 9P In
where
c=cCu, y=ys, fccirom Eq. (9),

c=cu—c12+4cu, y=ys, beccfrom Eq. (12),

and derivatives are taken along the melting curve. We
use the two identities

dc dc aT y
dOPly 0PIy T, dP
1 10V 1 dT »r
=——— —_— —a— (15)
K V 0Pl KT dP

After some algebra one finds
(1_ ff_>_ f_<1_ ﬁ>~ i
T ny KT 6yf 86442yf
dc11 i
] 5] ] ]
P iy
1 25 2y xs
-
T Vs P 2y;/  8culys
dc11 OCus
I: ( )‘“ (611—612)4—
d

i

2f —1
—a(l — ——)]» for fec’s,  (16)
0yy

apr

dT { 0 Incy
9P

3012

6P

ad 11’1644

oT

6612

aT

dT yr {alnc
ap | op

4xb 6644

yoc P

(:

4xpCaa Zb 1 2p
(202

T 279 Zyb Ky 6yb
4xb 6644

1 2p
s
T\ Ty Vb yoc 0T | p

4xpC1 %y 25\ ) !
+ - —)—a(l— ——)} an
yic 2y 6y
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for bec’s. Here

xr=0y7/9v, (18)

87 =urdys/dur, (19)
in Eq. (16), and

xo=0ys/0v, (20)

zb=uLayb/6uL, (21)

and ¢=c¢j1—c1a+4cy in Eq. (17). Further we use the
identity
l/KT=3/(611+2612)+TMV012/CP (22)

in (16) and (17), where Cp is the specific heat at con-
stant pressure.

We have calculated the initial slopes of the melting
curves of the metals Na, K, Al; Cu, Ag, and Au using
the third-order elastic constants of Barsch and Chang?
and the data of Miller and Schuele?® for Pb. The results
are presented in Table. V For purposes of comparison
results of calculations are given using recent data for
the pressure derivatives of the elastic constants of Cu,
Ag, and Au,** and for the pressure and temperature
derivatives of the elastic constants of Al.2

All of the third-order elastic constants used are those
measured at room conditions, whereas Eqs. (16) and
(17) require quantities evaluated at the zero-pressure
melting point. Miller and Schuele have obtained mea-
surements of the pressure derivatives of the elastic con-
stants of lead at temperatures of 195 and 296°K, and
we have extrapolated these data to the one atmosphere

TABLE V. dT3/dP for seven cubic metals.

dTy/dP dTy/dP
Element Theoretical Experimental
Sodium  bcc 5.95= 8.0v
Potassium 11.68» 15.3v
Aluminum fcc gg;f; 5.9¢
Copper gggj 3.95¢
. (4.67»

Silver 16_0; 5.87¢

4,650 .
Gold 387t 6.12
Lead N 6.5

s See Ref. 22.

bR. C. Newton, A. Jayaraman, and G. C. Kennedy, J. Geophys. Res.
67, 2559 (1962).

¢ A. Jayaraman, W. Klement, Jr., R. C. Newton, and G. C. Kennedy,
J. Phys. Chem. Solids 24, 7 (1963).

d See Ref. 25.

e L. H. Cohen, W. Klement, Jr., and G. C. Kennedy, Phys. Rev. 145,
519 (1966).

f See Ref, 24.

& See Ref. 23.

b G, C. Kennedy and R. C. Newton in Solids Under Pressure (McGraw-
Hill Book Co., New York, 1963), p. 171.

ill?ata on pressure derivatives taken from Ref. 23 and extrapolated to
melting.

(122 (7}) R. Barsch and Z. P. Chang, Phys. Status Solidi 19, 139
967).

2 R. A. Miller and D. E. Schuele, J. Phys. Chem. Solids 30,
589 (1969).

2Y. Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).

% J. F. Thomas, Jr., Phys. Rev. 175, 955 (1968).
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melting point. Results of this calculation are also pre-
sented in Table V.

The theoretical results in Table V are uniformly too
low, although qualitatively of the correct magnitude.
In the case of lead the use of the extrapolated pressure
derivatives improves the agreement significantly. It is
unfortunate that the temperature derivatives are them-
selves obtained by a finite difference procedure which
makes a meaningful extrapolation of the temperature
derivatives to melting impossible unless greater ac-
curacy were obtainable. In view of the improvement in
the calculations of the Lindemann parameter obtained
by using data at the melting point, it would be valuable
to use data at elevated temperatures when such data
become available.
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APPENDIX: MOMENT METHOD FOR
FACE-CENTERED LATTICES

We express the frequency distribution as a series in
Legendre polynomials. Since g(x) is an even function,
we use only the even polynomials and find

g(x) = éo A 2nP2n(x) ) (Al)
A= (4n—{—1)/1 g(x) P2y (x)dx, (A2)

where ¥=w/wr, with wz the maximum frequency and g
normalized so that fg'g(x)dx=1. We truncate the series
at =6, in which case an artificial constant term re-
mains. The magnitude of this term in comparison with
the complete function will be a qualitative indication
of the accuracy of the seven term series.

We define dimensionless moments

1
#2k=/ xg(x)de, 0<psn<1. (A3)
0

The coefficients can now be expressed in terms of these
moments. The first few are

Aog=po= 1 )
A2=%3us—uy),
A5=9(35u4—30u2+3u0)/8,

(A4)
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and, in general,
A am = (4‘71+1)P2n (x) I 3-'2k=ll2k ,

where the 2kth power of « (k=0 included) is replaced by

by wor.
The secular equation may be expressed in the form

Yoy gy +r=0, y=me?/2a1,
p=—(an1+azxtas),

q=dndz2+dn(133+d2zdsa —ao?—a1?—a13?,

(AS)
7= —a11092033 11025+ Q220157+ A330122 — 2012013023 ,

where the a;; are the six independent elements of the
secular determinant,” and each is a trigonometric func-
tion of the direction of propagation. The three roots of
Eq. (AS) correspond to the three branches of the dis-
persion curve. Call these roots yi, ys, ¥s, ¥:7<0. All par-
tial moments are obtained by multiplying Eq. (AS) by
7% and summing over the three values of 7. Thus we
have the iteration

3

Z yin= _pz yin~1_qz yin—z_rz yin—(i (A6)

=
where

L yf=3, yi=—p, Lyl=—2¢+p"

The total moments are found by summing Eq. (A6)
over all directions of propagation. All sums which arise
are of the form

N Ta N wa
> cosb— and Y. sinf—
N

a=—N a=N N

and have been performed by Montroll.* We have used
the IBM FORMAC?¢ compiler for assistance in com-
puting the higher moments. Since the roots of the secular
equation are densely packed on the interval 0<«<1,
summations are equivalent to integrals, i.e.,

¥ %3 z(“’—) (A7)

3(2N)3 a=—N ag=—N a3=—N i=1 \wy,

We illustrate the calculation with the simplest non-
trivial case 2. From Eqgs. (AS) and (A6)

m
Z Yi=— Z w?=a;+antas;, (AS)
% a; ¢
(w?) : 2 (Xwd) : 2
W)= — W)= —— a11,
3(2]\7)3 a1,02,a3 4 m (2N)3 a1,02,a3 "
(A9)

26 PL/1-FORMAC Interpreter User’s Reference Manual, Con-
tributed Program Library 360d 03.3.004, IBM-Boston Program-
ming Center, 545 Technology Square, Cambridge, Mass. 02139.

SHAPIRO 1

where the last result is a consequence of the symmetries
involved in the triple summation. Substituting for a1;”

20[1
2\ _ 3 ;
<w > m (ZN)3 “1%2:,:;3 (2 1c2 6163_}_231 052/011) )

(A10)

where ¢;=cos(ra;/N) and s;=sin(ra;/N). Carrying out
the summations we find

(@ =2a1(24-as/ar)/m

correct to order 1/N.

The results for all the even moments {(mw?/4a1)™),
through the twelfth, are given in Table VI as a power
series in as/a1,

((me/4ar)") = z= dom (i3] 20)".

(A11)

(A12)

Thus the #th moment of »? is a power series of order 7
in af2/ al.

To calculate the dimensionless moments of Eq. (A3),
one needs the maximum frequency. This is%

wL2=8a1/m. (A13)
Then from Egs. (A12) and (A13)
1 =
pen=— 2. dum(as/2a:1)™. (Al4)

27 m=0

It is convenient to define a parameter y=14a2/2a;.
The coefficients in the series

Hon =2 Uniy? (A15)

=0
are readily calculated from Eq. (A14) and Table VI.
They are listed in Table VII.

From the moments in Eq. (A15), the expansion co-
efficients are found using Eq. (A4). Instead of listing

24
20
1.6

plx)
1.2

LR N T U N N T N N S B |

o
§

1 1
o 2 3 4 .8 ) 7 8 9 1.0

T1c. 1. Frequency spectrum for a fcc lattice approximated by
(%) = n—o® @20 (v) P2n (%) for two values of v.

27 R. Leighton, Rev. Mod. Phys. 20, 165 (1948).
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TasLE VI. Coefficients dum in ((mw?/4a1)"y=3. dnm(as/2a1)™.
m=0
7
2\ 0 1 2 4 6
0 1
1 1 1
2 5/4 2 2/3
3 57/32 15/4 9/2
4 703/256 115/16 179/16 35/8
5 4549/1024 3585/256 3415/128 1975/64 175/8 /8
6 30353/4096 3513/128 63669,/1024 2803/32 1287/16 189/4 231/16
TasLE VII. Coefficients #,; in uon=2" tn;v’.
i=0
j
k 0 1 2 4 6
0 1
1 0 1/2
2 3/16 —1/4 3/8
3 1/256 9/32 —3/8
4 287/4096 —43/256 119/256 35/128
5 265,215 1305/21 —1715/21 —35/64
6 8901/218 —3201/215 26709/216 —1613/21 243/256 231/1024
6
TABLE VIII. Coefficients ¢ms in g(x)= 2. > (Cmst2%)y™.
m=0 s=0
70
x0 -1 394.4801 —7456.733 416 636.377
x? —98 892.0780 +-539 555.542 —1225 395.556
xt +1 162 769.4146 —6414 176.142 +-14 723 600.187
xS —5045 768.8222 +-28 037 926.573 —64 830 734.783
8 +9938 163.3777 —55 514 840.144 +129 050 656.239
x10 —9038 442.1118 450 690 784.018 —118 319 751.574
o +3 084 600.4892 —17 353 901.354 +40 638 280.270
7 7 v 7°
a0 —19 949.442 413 684.892 —5149.449 4-839.916
«? +1 492 986.953 —1039 120.729 4396 379.262 —65 513.447
xt —18 122 819.650 -+12 738 083.381 —4 906 361.619 +818 918.090
x8 +-80 373 224.146 —56 896 499.134 +-22 074 458.251 —3 712 428.675
«8 —160 848 310.051 —+114 483 821.549 —44 667 748.967 +7 557 444.089
x10 4148 087 993.856 —105 852 109.181 —+41 486 245.806 —7053 614.483
%12 —51032131.214 436 603 290.269 —14 398 700.639 +2 458 077.774

the results of this last operation we have chosen to
convert the resulting Legendre expansion to a power
series in «%. The final expression for g is

6 6
g@)=22 v X com’a?e. (A16)
m=0 s=0

The 49 coefficients are listed in Table VIII. These co-
efficients are sufficient to calculate the spectrum of the
face-centered lattice as an even power series of twelfth

order in frequency. The spectra obtained for y=0.95 and
1.00 are shown in Fig. 1. The comparison of our results
with those of Leighton?” shows that the moment method
describes semiquantitatively the two peaks character-
istic of the fcc lattice.

We may compare the magnitude of the synthetic
constant term with the average value of g in Eq. (A16).
The latter is normalized to unity. In a typical case with
y=1, the constant term has magnitude 0.04 indicating
that Eq. (A16) is more accurate than might be expected.



